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The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that
constitute the solvents are already in gasoline composition. In this work, the combination of Hydrogen
Nuclear Magnetic Resonance (1H NMR) spectroscopic fingerprintings with pattern-recognition multi-
variate Soft Independent Modeling of Class Analogy (SIMCA) chemometric analysis provides an original
and alternative approach to screening Brazilian commercial gasoline quality in a Monitoring Program for
Quality Control of Automotive Fuels. SIMCA was performed on spectroscopic fingerprints to classify the
razilian commercial gasoline
uality control
H NMR spectroscopic fingerprintings
attern-recognition multivariate SIMCA
egulation ANP n◦ 309

quality of representative commercial gasoline samples selected by Hierarchical Cluster Analysis (HCA)
and collected over a 6-month period from different gas stations in the São Paulo state, Brazil. Follow-
ing optimized the 1H NMR-SIMCA algorithm, it was possible to correctly classify 92.0% of commercial
gasoline samples, which is considered acceptable. The chemometric method is recommended for routine
applications in Quality-Control Monitoring Programs, since its measurements are fast and can be easily
automated. Also, police laboratories could employ this method for rapid screening analysis to discourage
adulteration practices.
. Introduction

Brazilian commercial gasoline is a petroleum-derived product
onstituted by a complex mixture of liquid aliphatic and aromatic
ydrocarbons, ranging from C4 to C12 carbon atoms, whose boil-

ng point range up to 225 ◦C. A typical gasoline is predominantly
mixture of paraffins (alkanes), olefins (alkenes), naphthenes

cycloalkanes), and aromatics, which can also contain some addi-
ives (aliphatic alcohols and methylethers) to improve its octane
umber. Oil feedstock, refining processes and aging are some of
he factors that affect the detailed chemical composition of gasoline
1,2]. In Brazil, the commercial gasoline used as fuel in internal com-
ustion engines may have a content of anhydrous ethanol between
0 and 25%, an amount not encountered in any other country

3].

The Brazilian Government’s recent suspension of the state
onopoly on fuel production and distribution has given rise to sig-

ificant changes in the market. This event has opened up enormous

∗ Corresponding author: Tel.: +55 16 3301 6666; fax: +55 16 3301 6693.
E-mail address: jeduardo@iq.unesp.br (J.E.d. Oliveira).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.04.002
© 2010 Elsevier B.V. All rights reserved.

opportunities both for established oil companies, newcomers, fuel
dealers and gas stations, operated by national or foreign compa-
nies. This competition leads to a substantial variation of the price of
fuel, while the quality of the product is not necessarily guaranteed
[4].

Generally, quality control of fuels is ensured through the estab-
lishment of technical specifications, which vary in different areas of
the world, i.e., EN 228 in Europe, ASTM D4814 in the USA, JIS K2202
in Japan and IS 2796 in India [5]. However, these specifications can
be modified inadvertently through inadequate transport, handling
and storage or through adulteration with some substances [6,7].
Unfortunately, the adulteration of automotive gasoline is becoming
a common practice because of economic issues. In fact, fuel adul-
teration has worried the Brazilian Government Petroleum, Natural
Gas and Biofuels Agency (Agência Nacional do Petróleo, Gás Nat-
ural e Biocombustíveis, ANP) not only for quality control reasons,
but also for tax evasion. Adulteration involving the addition excess

of anhydrous ethanol and of petrochemical organic solvents, such
as light aliphatic (C4–C8), heavy aliphatic (C13–C15), and aromatic
hydrocarbons, is one of the possibilities that are observed. Like-
wise low cost, lower tax rates and similar chemical composition
are factors that contribute to their use in adulteration [8].
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Currently, in Brazil, a commercial gasoline quality is con-
rolled by several technical specifications (namely physicochemical
arameters) established by the Regulation ANP n◦ 309 [9]. All
hese specifications are obtained by analytical protocols covered
y international guides, mainly from the American Society for
esting and Materials (ASTM International) [10]. However, sev-
ral of these specifications need large amounts of sample and
nvolve manual operations, which are rather subjective, tedious
nd prone to operational errors. Moreover, it is not always pos-
ible to identify gasoline adulteration using these specifications
ecause many solvents are very similar to gasoline, and con-
equently, physicochemical parameters are usually not efficient
or detecting adulteration [10,11]. Using this methodology, previ-
us studies have shown that physicochemical parameters are not
nough to identify adulterations unless chemometrics techniques
ad been employed. Only adulterations using high levels of anhy-
rous ethanol, aromatic solvents or heavy aliphatic hydrocarbons
an be identified by physicochemical parameters [4,13]. Thus, new
lternative analytical methods must be developed to monitor such
dulterations. Likewise, simple, fast and efficient methods to certify
he quality and authenticity of the commercial fuels are desirable
nd, therefore recommended for routine applications in quality-
ontrol monitoring programs.

Usually, amongst all analytical techniques, gas chromatographic
ethods are employed for establishing adulteration in gasoline

5,11,14–18]. However, chromatographic techniques are generally
low, time-consuming and expensive for the analysis of a large
umber of samples, making impracticable its in routine applica-
ion [19,20]. On the other hand, spectroscopy methods are quite
uitable for such determinations [7,21,22]. Especially, nuclear mag-
etic resonance (NMR) spectroscopy has become a powerful tool

or gasoline analysis without pre-treatment [19,20,23,24]. Besides
hat, 1H NMR measurements are fast and can be easily automated,
llowing the analysis of a large number of samples in a short period
f time and, therefore recommended for routine applications in
uality-control monitoring programs. In general, the spectrum is
ubdivided into regions, each of which is associated with a spe-
ific molecular substructure, for example, to aromatic, olefinic, and
liphatic hydrogens [24,25]. A huge amount of data in NMR fin-
erprinting is produced, and chemometric analysis is frequently
eeded to extract desired information. Chemometrics, which is the
pplication of mathematical, statistical, and logical–mathematical
ethods to chemical issues, is capable of treating large quantities

f information and has been used in different areas [26–29]. In this
eld, the pattern-recognition methods are divided into exploratory
nalysis, and classification algorithms. The first one is constituted
y two techniques: Hierarchical Cluster Analysis (HCA) and Prin-
ipal Component Analysis (PCA); while the last one is constituted
y two algorithms: K-Nearest Neighbor (KNN) and Soft Indepen-
ent Modeling of Class Analogy (SIMCA). Exploratory analysis (HCA
nd PCA) shows that the samples tend to separate themselves
nto clusters, indicating that analysis using classification algorithms
SIMCA or KNN) ought to succeed. Thus, the next stage of analysis
ill be to build classification models that can be used to predict
hich category a sample originates from. A survey of current lit-

rature demonstrates the utilization of these methods applied to
he analysis of fuel to detect adulteration, especially, gasoline fuel
4,6–8,11–16,30,31]. Moreover, in regard to Brazilian commercial
asoline, many authors have studied its adulteration with the addi-
ion of petrochemical solvents [4,6–8,11–14,30]. Thus, the use of
H NMR fingerprintings coupled with pattern-recognition meth-

ds can be very useful for quality control of gasoline and other
uels. For our knowledge, this is the first application of pattern-
ecognition multivariate SIMCA chemometric analysis to 1H NMR
pectroscopic fingerprintings derived from commercial gasoline
amples.
ta 82 (2010) 99–105

2. Experimental

2.1. Physicochemical parameters

The gasoline samples were provided by a laboratory responsi-
ble for monitoring the quality of automotive fuels, in particular,
gasoline, ethanol and diesel oil. 2400 gasoline samples, collected
randomly from different gas stations in São Paulo state, Brazil, over
6 months, were stored in polyethylene terephthalate flasks and
transported in refrigerated boxes, following official ANP procedures
[32,33]. When arriving at the lab, 90 mL samples were immedi-
ately collected in 100 mL amber PET flasks with sealing caps and,
then stored in a freezer to avoid volatilization and to keep their
integrity. All gasoline samples were previously analyzed by sev-
eral physicochemical parameters established in Regulation ANP
n◦ 309, namely, atmospheric distillation temperatures required to
reduce the original volume of the sample to 10%, 50% and 90%,
distillation, final boiling point and distillation residue (ASTM D86)
[34], relative density (ASTM D4052) [35], motor octane number,
research octane number and anti-knock index (correlation to ASTM
D2699/D2700) [36,37] and percentage (v/v) of benzene (ASTM
D6277) [38], anhydrous ethanol (NBR 13992) [39] and hydrocar-
bons (saturates, olefins and aromatics—correlated to ASTM D1319)
[40]. The instruments employed in the analyses were an automatic
distiller (Normalab NDI440 v.1.70C), a densimeter (Anton Paar
DMA4500 v.4.600.b) and a portable IR analyzer (Grabner IROX2000
v.2.02). According to these results, the samples were classified in
two groups: conform (meeting Brazilian specification) and non-
conform (failing Brazilian specification). From the physicochemical
parameters it was possible to select representative gasoline sam-
ples by exploratory analysis (Hierarchical Cluster Analysis, HCA) for
further 1H NMR analyses.

2.2. 1H NMR analyses

All 1H NMR spectroscopic fingerprintings were acquired at room
temperature on a Varian (Palo Alto, CA, USA) INOVA spectrometer,
using a 5-mm single cell 1H/13C inverse detection flow probe. For
each analysis, 30 �L of gasoline sample was dissolved in 600 �L
of deuterated chloroform (CDCl3). The 1H NMR fingerprinting was
obtained at 500 MHz for 1H observation, using CDCl3 as the solvent
and tetramethylsilane (TMS) as the internal standard. The spec-
tra were obtained using 45◦ rf pulse (4.1 �s), a spectral width of
4725 Hz, 64 transients with 64 000 data points, an acquisition time
of 2 min and relaxation delays of 1 s. Thirty-two scans were accu-
mulated for each spectra and processed with 32 000 data points
and using an exponential weighing factor corresponding to a line
broadening of 0.1 Hz. 1H NMR chemical shifts are reported in parts
per million (ppm) relative to residual proton signals of CDCl3 at
7.24 ppm. The FIDs were zero filled and Fourier transformed. The
phase and baseline were manually corrected in all spectra.

2.3. Pattern-recognition multivariate chemometric analysis

In this field, the pattern-recognition methods were divided in
Hierarchical Cluster Analysis (HCA) and Soft Independent Model-
ing of Class Analogy (SIMCA). The first are unsupervised statistical
methods that give complementary information about the similar-
ities and groupings of the samples considered. If a trend exists,
it is worthwhile evaluating the possibility of classifying the sam-

ples. In conjunction with this, SIMCA is a well-known multivariate
supervised pattern-recognition method that constructs models
using samples preassigned to a category, i.e., in this case, conform
(meeting Brazilian specification) and nonconform (failing Brazilian
specification).
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ig. 1. Dendrograms for the selection of the 25 representative monthly gasoline sa
f) September.

HCA is used to emphasize and identify natural groups of samples
ased on their physicochemical parameters. Dendrograms, a visual
epresentation of HCA results, illustrate the categories as clustering
f samples and reveals similarities between samples. Two criteria
ust be chosen to perform HCA: firstly, the distance between sam-

les or groups and secondly, the criteria to link samples and groups.
he usual way to calculate the distance is by using the Euclidean
istance, where the distance between objects k and l is evaluated in
dimensions. Euclidean distance is an “ordinary” distance between
wo points that one would measure with a ruler. On the other hand,
he most appropriate linkage criterion is incremental, which the
roups are linked causing a minimum “loss of information” and
here two groups of samples differ only slightly. HCA, performed
sing Pirouette software (version 3.11, Infometrix Co., Woodinville,
A, USA) [41] and codified data, was applied to each monthly

preadsheet of physicochemical parameters results, used as vari-
bles. Firstly, the variables were autoscaled and then logarithmic
ransformed in order to select those representative samples that
resented minimal similarity. The similarity line, which establishes
lusters, presented values between 0.5 and 0.6. From the monthly
endrograms, each one constituted of 400 samples, 25 representa-
ive gasoline samples were monthly selected for further 1H NMR
nalysis.

SIMCA chemometric method was applied in order to build a
creening model of multivariate pattern-recognition technique,
hich describes different classes of samples based on classification

ules defined by the values of distinct measurements provided for
set of known samples (the training set). These rules are then used

o classify external samples (the prediction set) on the basis of the
ame measurements. The number of samples correctly classified
y the model is a measure of the quality of the criteria employed.

f appropriate, the model can then be used to classify unknown
amples according to the same rules. To apply SIMCA modeling,
H NMR spectroscopic fingerprints of 150 representative gasoline
amples were shifted to right or left as needed, with the TMS signal
s the reference. 1H NMR spectroscopic fingerprint of 100 gasoline
amples were employed in the training set, and the remaining 50

amples formed the prediction set. These samples were selected
rom exploratory analysis HCA of its spectroscopic profile. These
pectra profiles were saved as ASCII files and transferred to a
C for data analysis. The data matrix (26 713 × 150 × 2; chemical
hifts × representative gasoline samples × preassigned categories:
that exhibited least similarity: (a) April, (b) May, (c) June, (d) July, (e) August and

conform and nonconform) were constructed and imported into
Pirouette software (version 3.11, Infometrix Co., Woodinville, WA,
USA) [41] for SIMCA algorithm. Each line in the matrix constitutes
a sample, and the columns represent the number values obtained
from the chemical shifts and intensities of the peaks. 1H NMR spec-
tra were normalized to 1-norm (the area under the sample profile is
set equal to one), and the first derivative was taken. Autoscaling, in
which each variable is mean-centered and scaled to unity variance,
was applied to give each variable equal weight, and therefore, large
and small peaks were treated with equal emphasis. 1H NMR-SIMCA
algorithm was applied to whole data set, excluding CDCl3 and TMS
signals.

3. Results and discussion

Significant changes in the physicochemical parameters of Brazil-
ian automotive gasoline may be caused by the addition of excess
CAE and/or adulterating solvents, especially, benzene, toluene,
xylene, hexane, complex hydrocarbon mixtures, mineral spirits,
kerosene, rubber solvent, petrochemical naphtha, diesel, and thin-
ner, and these can give rise to variations in relative density, octane
number, hydrocarbon composition and distillation curve profile.
2400 samples of commercial gasoline were collected in the State
of São Paulo, Brazil, over a 6-month period and 150 representative
samples (79 meeting Brazilian specification and 71 failing Brazilian
specification) were selected using HCA analysis. Six dendrograms
(Fig. 1), each one constituted of 400 samples and obtained tak-
ing into account the Euclidean distance, incremental linkage and
similarity line criteria, resulted in 25 clusters (represented by dif-
ferent colors). The color bar sequence, automatically assigned by
the Pirouette chart preference, is also used to assign colors to sam-
ple and variable clusters in the dendrogram, based on the location
of the similarity line. Each monthly dendrogram, 25 representative
gasoline samples that exhibited least similarity were selected for
1H NMR analysis, maintaining the representatively of the dataset.
Summary of physicochemical parameters values of representative
commercial gasoline samples are presented in Table 1.
1H NMR spectrum fingerprinting of gasoline is very complex,
showing peaks almost in all spectral regions. A typical spectrum of
Brazilian gasoline is shown in Fig. 2. From these it is not possible
to see that many compounds present in adulterating solvents are
also present in gasoline. Also, all spectroscopic fingerprints (Fig. 3)
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Table 1
Summary of representative gasoline physicochemical parameters and its specification according to Regulation ANP n◦ 309.

Guide Physicochemical parameters ANP specification Representative gasoline set

Minimum Maximum Range Mean

ASTM D4052 Relative density (g cm−3) Not specified 0.7298 0.7931 0.0633 0.7520
ASTM D6277 Benzene (% v/v) 1.0, max 0.0 0.62 0.62 0.33
NBR 13992 Anhydrous ethanol (% v/v) 25 ± 1 23.0 66.0 43.0 27.2

Distillation curve
ASTM D86 10% Evaporated, max (◦C) 65.0, max 44.2 73.2 29.0 55.3

50% Evaporated, max (◦C) 80.0, max 63.3 116.5 53.2 72.9
90% Evaporated, max (◦C) 145.0–190.0 77.8 191.1 113.3 156.9
Final boiling point, max (◦C) 220.0, max 78.8 285.7 206.9 204.9
Residue, max (% v/v) 2.0, max 0.4 2.8 2.4 1.0

Octane numbers
Correlation to ASTM D2699/2700 Motor octane number, min 82.0 77.4 87.2 9.8 82.2

Research octane number, min Not specified 89.8 98.4 8.6 95.0
Anti-knocked index, min 87.0 84.6 91.4 6.8 88.6

t spec
.0, ma
.0, ma
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g

Hydrocarbons composition
Correlation to ASTM D1319 Saturates (% v/v) No

Olefins (% v/v) 45
Aromatics (% v/v) 38

re very similar from one gasoline to another, because the basic
riginating refinery processes are quite similar. Previous studies
ave made a detailed description about assignments of gasoline
pectrum [19–23]. In general, classes of compounds (not individ-
al ones) are associated with specific spectral regions. For example,
romatic compounds can be associated with peaks at 6.7–8.0 ppm,
21] and the region between 0.5 and 2.05 ppm contains signals
ainly due to cycloalkanes (naphthenes) and normal and isoparaf-
ns [19].

Clearly, visual inspection of spectroscopic profiles is not efficient
n identifying the presence of adulterant solvents in gasoline (Fig. 3)

ig. 2. 1H NMR spectroscopic fingerprinting of a typical Brazilian commercial gaso-
ine sample (CDCl3, 500 MHz).

ig. 3. Typical 1H NMR spectroscopic fingerprints of all representative commercial
asoline samples (CDCl3, 500 MHz).
ified 4.2 68.5 64.3 38.8
x 0.0 29.9 29.9 19.0
x 7.1 26.4 19.3 15.8

and, therefore, to distinguish commercial gasoline meeting or fail-
ing Brazilian specification. Any attempt to distinguish between
gasoline samples must consider numerous peaks and requires the
application of a chemometric classification technique. Therefore,
pattern-recognition chemometric approach is a tool very useful
and is often employed for gasoline discrimination. In this work, we
chose the entire 1H NMR spectrum (except CDCl3 and TMS signals)
for the SIMCA analysis because the choice of a large number of peaks
allows us to achieve a more reliable classification models [7,11,15].
In this way, recently, Monteiro et al. [7] distinguish intentionally
adulterated gasoline samples by organic solvents from 1H NMR-
PCA and 1H NMR-HCA exploratory models, samples, which showed
a tendency to meet in the nonconform group with the increase of
the solvent concentration.

The SIMCA method was selected since it permits the classifi-
cation of an unknown sample on the basis of rules defined by a
training set. Additionally, gasoline samples quality proceeding from
physicochemical parameters established by Regulation ANP n◦ 309
(as supervisioned class) was established in the data matrix for the
SIMCA analysis to be performed. In the development of SIMCA algo-
rithm, 100 gasoline samples were used to compose the training set
and the remaining 50 samples were used as external prediction
set. The prediction set selection was performed through Hierarchi-
cal Cluster Analysis (HCA) of all representative gasoline samples
(Fig. 4). As can be seen in Fig. 4, the dendrogram results in three
different clusters (represented by a, b and c). In each cluster, a pro-
portional number of samples were selected, such that in cluster
a there were 32 samples, cluster b: 10 samples and cluster c: 8
samples.

Moreover, the probability threshold of the algorithm was based
on a 95% confidence level, while several pretreatments and pre-
processing were tested, and the best results were obtained when
the first derivative and autoscaled were applied. The autoscale pre-
processing was very important because it allowed the attribution
of the same importance for all spectral regions. In SIMCA model,
the 3D class projection (Fig. 5) provides a visual evaluation of the
degree of class separation. To create this object, a three-factor prin-
cipal component analysis was performed on the entire training set
during the SIMCA processing. It was also possible to see a relative

good segregation between samples in the scores hyperboxes. Also,
a close examination of the SIMCA 3D results showed a slight overlap
between few gasoline samples in the PCA space. The coordinates of
a bounding ellipse (based on the standard deviations of the scores
in each principal component direction) for each category are pro-
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Fig. 4. Dendrogram for the prediction set selection of 50 representativ

ected into this three-factor principal component space; they form
confidence interval for the distribution of the category. Fig. 5

hows the score points for two categories (conform and noncon-
orm) and the corresponding confidence intervals suggested by the
ingle pixel grey points.

The SIMCA absolute errors in classification algorithm model
ould be of two types: Type I (object not included in its own class)
nd Type II (object included in a wrong class). Table 2 summarizes
he error in classification pointed out by full cross-validation of

IMCA algorithm. As can be seen in Table 2, while Type I error was
ot observed, a significant number of Type II was obtained in the
ommercial gasoline samples, mainly, nonconform samples.

In SIMCA model training set, three principal components
ccounted approximately 70.0% of the total within-set variance and

ig. 5. SIMCA class 3D projections of samples in the training set on score plots. Note:
reen and red points represents conform and nonconform classes, respectively. (For

nterpretation of the references to colour in this figure legend, the reader is referred
o the web version of the article.)
ples of the dataset: (a) 32 samples, (b) 10 samples and (c) 8 samples.

correctly classified all samples, except for a few ones. The misclas-
sifications may be associated to final boiling point (FBP) and motor
octane number (MON) physicochemical parameters, measured and
correlated according to ASTM standard procedures (Table 3). Hence,
94.0% of the samples were correctly classified by application of the
SIMCA method. Based on these findings, it may be concluded that
the modeling power of the training set was satisfactory.

Lastly, 50 new samples, the external prediction set, were used
to evaluate the model. While all samples were clearly well segre-
gated, seven of them were apparently misclassified according to the
SIMCA model: six nonconform samples were classified as conform
to ANP regulations and one sample conformed to ANP specifications
was classified as nonconform by SIMCA (Table 3). As in the train-
ing set model, the misclassifications may be associated mainly to
motor octane number (MON) physicochemical parameter (Table 3).
Another misclassification physicochemical parameter was related
to FBP, T90 and AE values. In MON values cases, the physicochemical
results were not conclusive, because the values were very near to
the limits established by Regulation ANP n◦ 309 and were certainly
within the confidence limits of the method used (0.5 for MON).
In this parameter, three samples showed values between 81.4 and
81.9, while the minimum permitted value is 82.0. Therefore, none of
these parameters can be considered significantly different from the
limiting values when the confidence limits are taken into account.
In contrast, sample 20-June had a FBP temperature of 230.6 ◦C and
samples with anhydrous ethanol (AE) content between 28 and 44%,
which significantly exceed the allowed limits, clearly misclassifying

them according to the SIMCA model. Furthermore, sample 5-May
fully conforms to Regulation ANP n◦ 309, but was misclassified
by the SIMCA model. Based on these findings, 92.0% of the sam-
ples in the prediction set were correctly classified by application of

Table 2
Absolute errors in classification obtained by SIMCA.

Samples class Absolute error

Training set Prediction set

Type I Type II Type I Type II

Conform class 0 1 0 1
Non-conform class 0 5 0 6
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Table 3
Physicochemical parameter values associated with Regulation ANP n◦ 309 for misclassified gasoline samples in the training and prediction sets by the SIMCA model. Entries
in bold and italic font indicate parameters non-conform to ANP specifications.

Samples Physicochemical parameters associated with ANP regulation 309

Density T10 T50 T90 FBP MON RON AI Benzene Saturates Olefins Aromatics AE Residue

Misclassified samples in the training set by SIMCA model
20 – April 0.7572 61.4 74.7 176.4 202.6 81.2 93.6 87.4 0.25 44.8 15.0 13.9 26 1.2
24 – April 0.7560 58.5 73.0 172.7 210.6 81.8 94.6 88.2 0.40 44.5 16.5 14.7 25 0.9
11 – May 0.7379 52.6 71.5 153.3 200.8 82.5 95.3 88.9 0.48 39.1 20.1 15.9 26 0.9
10 – June 0.7540 53.7 72.5 166.6 270.8 82.4 95.5 89.0 0.44 32.6 26.6 15.1 25 1.2
23 – June 0.7553 57.3 72.6 167.5 208.9 81.8 94.6 88.2 0.42 45 14.9 16.1 25 0.6
11 – July 0.7526 55.4 72.7 161.9 232.7 82.4 95.5 89.0 0.43 35.3 24.1 15.3 26 2.6

Misclassified samples in the prediction set by SIMCA model
14 – April 0.7465 52.2 72.5 171.3 203.7 81.9 94.4 88.2 0.42 41.4 18.9 16.0 24 1.0
3 – May 0.7527 54.0 73.8 160.1 204.0 83.2 96.7 90.0 0.45 32.7 25.9 14.1 28 0.7
5 – May 0.7472 55.1 72.3 153.4 189.9 82.8 95.5 89.2 0.37 34.6 24.6 16.0 25 0.7
10 – May 0.7581 56.1 74.8 134.8 194.7 80.9 94.6 87.8 0.32 55.2 0.0 10.4 44 0.7
20 – June 0.7522 55.3 72.8 161.8 230.6 82.0 95.0 88.5 0.39 38.2 22.0 14.5 25 1.4
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6 – August 0.7556 53.4 72.2 157.9 201.3 81.7 95
8 – August 0.7616 56.9 74.5 176.0 207.6 81.4 95

10, T50 and T90 – distillation temperatures required to reduce the volume of the
ctane number; RON – research octane number; AI – anti-knock index; AE – anhyd

he SIMCA method. From this it may be concluded that the mod-
ling power was satisfactory and perfectly acceptable. Therefore,
H NMR fingerprintings and pattern-recognition SIMCA multivari-
te chemometric analysis supplied enough information to identify
he slight differences between conform and nonconform gasoline,
llowing the evident distinction between these two groups. Such
esults were in agreement with physicochemical analyses. These
esults proved that 1H NMR-SIMCA algorithm allow the segregation
ommercial gasolines into their quality.

. Conclusions

An analytical method, based on pattern-recognition SIMCA
hemometric analysis of 1H NMR spectroscopic fingerprinting, has
een developed in order to determine the quality specified by Reg-
lation ANP n◦ 309 of Brazilian commercial gasoline. The 1H NMR
echnique has a high potential to determine the quality of Brazilian
ommercial gasoline and the resulting spectroscopic fingerprints
ssociated with the SIMCA model classification were satisfactory
or screening the quality of gasoline samples. Finally, this work
ointed out that 1H NMR-SIMCA algorithm, as alternative analyt-

cal methodology, offers an appealing procedure for commercial
utomotive gasoline quality control by government agency lab-
ratories. This method can be applied in routine quality control,
n view of possible automation, given that it allows analyses of a
reat number of samples, and employs only one NMR dedicated
nstrument.
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